2005-09-03 03:10:04 +00:00

578 lines
17 KiB
Haskell

{-# OPTIONS -cpp -fglasgow-exts #-}
{-# OPTIONS -fno-warn-unused-imports -fno-warn-name-shadowing #-}
{-# OPTIONS -fno-warn-unused-matches -fno-warn-unused-binds #-}
--
-- Copyright (C) 2004 Don Stewart - http://www.cse.unsw.edu.au/~dons
--
-- This library is free software; you can redistribute it and/or
-- modify it under the terms of the GNU Lesser General Public
-- License as published by the Free Software Foundation; either
-- version 2.1 of the License, or (at your option) any later version.
--
-- This library is distributed in the hope that it will be useful,
-- but WITHOUT ANY WARRANTY; without even the implied warranty of
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
-- Lesser General Public License for more details.
--
-- You should have received a copy of the GNU Lesser General Public
-- License along with this library; if not, write to the Free Software
-- Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
-- USA
-- Based on $fptools/ghc/compiler/utils/Binary.hs:
-- (c) The University of Glasgow 2002
--
-- Binary I/O library, with special tweaks for GHC
--
-- Based on the nhc98 Binary library, which is copyright
-- (c) Malcolm Wallace and Colin Runciman, University of York, 1998.
-- Under the terms of the license for that software, we must tell you
-- where you can obtain the original version of the Binary library, namely
-- http://www.cs.york.ac.uk/fp/nhc98/
--
-- We never have to write stuff, so I've scrubbed all the put* code.
--
module Language.Hi.Binary (
{-type-} Bin,
{-class-} Binary(..),
{-type-} BinHandle,
openBinIO, openBinIO_,
openBinMem,
-- closeBin,
seekBin,
tellBin,
castBin,
readBinMem,
isEOFBin,
-- for writing instances:
getByte,
-- lazy Bin I/O
lazyGet,
-- GHC only:
ByteArray(..),
getByteArray,
getBinFileWithDict, -- :: Binary a => FilePath -> IO a
) where
-- The *host* architecture version:
#include "MachDeps.h"
-- import Hi.Utils -- ?
import Language.Hi.FastMutInt
import Language.Hi.FastString
#if __GLASGOW_HASKELL__ < 604
import Data.FiniteMap
#else
import qualified Data.Map as M
#endif
import Data.Unique
import Data.Array.IO
import Data.Array
import Data.Bits
import Data.Int
import Data.Word
import Data.IORef
import Data.Char ( ord, chr )
import Data.Array.Base ( unsafeRead, unsafeWrite )
import Control.Monad ( when )
import System.IO
import System.IO.Unsafe ( unsafeInterleaveIO )
import System.IO.Error ( mkIOError, eofErrorType )
import GHC.Real ( Ratio(..) )
import GHC.Exts
import GHC.IOBase ( IO(..) )
import GHC.Word ( Word8(..) )
#if __GLASGOW_HASKELL__ < 601
import GHC.Handle ( openFileEx, IOModeEx(..) )
#endif
#if __GLASGOW_HASKELL__ < 601
openBinaryFile f mode = openFileEx f (BinaryMode mode)
#endif
type BinArray = IOUArray Int Word8
---------------------------------------------------------------
-- BinHandle
---------------------------------------------------------------
data BinHandle
= BinMem { -- binary data stored in an unboxed array
bh_usr :: UserData, -- sigh, need parameterized modules :-)
off_r :: !FastMutInt, -- the current offset
sz_r :: !FastMutInt, -- size of the array (cached)
arr_r :: !(IORef BinArray) -- the array (bounds: (0,size-1))
}
-- XXX: should really store a "high water mark" for dumping out
-- the binary data to a file.
| BinIO { -- binary data stored in a file
bh_usr :: UserData,
off_r :: !FastMutInt, -- the current offset (cached)
hdl :: !Handle -- the file handle (must be seekable)
}
-- cache the file ptr in BinIO; using hTell is too expensive
-- to call repeatedly. If anyone else is modifying this Handle
-- at the same time, we'll be screwed.
getUserData :: BinHandle -> UserData
getUserData bh = bh_usr bh
setUserData :: BinHandle -> UserData -> BinHandle
setUserData bh us = bh { bh_usr = us }
---------------------------------------------------------------
-- Bin
---------------------------------------------------------------
newtype Bin a = BinPtr Int
deriving (Eq, Ord, Show, Bounded)
castBin :: Bin a -> Bin b
castBin (BinPtr i) = BinPtr i
---------------------------------------------------------------
-- class Binary
---------------------------------------------------------------
class Binary a where
get :: BinHandle -> IO a
getAt :: Binary a => BinHandle -> Bin a -> IO a
getAt bh p = do seekBin bh p; get bh
openBinIO_ :: Handle -> IO BinHandle
openBinIO_ h = openBinIO h
openBinIO :: Handle -> IO BinHandle
openBinIO h = do
r <- newFastMutInt
writeFastMutInt r 0
return (BinIO noUserData r h)
openBinMem :: Int -> IO BinHandle
openBinMem size
| size <= 0 = error "Hi.Binary.openBinMem: size must be >= 0"
| otherwise = do
arr <- newArray_ (0,size-1)
arr_r <- newIORef arr
ix_r <- newFastMutInt
writeFastMutInt ix_r 0
sz_r <- newFastMutInt
writeFastMutInt sz_r size
return (BinMem noUserData ix_r sz_r arr_r)
tellBin :: BinHandle -> IO (Bin a)
tellBin (BinIO _ r _) = do ix <- readFastMutInt r; return (BinPtr ix)
tellBin (BinMem _ r _ _) = do ix <- readFastMutInt r; return (BinPtr ix)
seekBin :: BinHandle -> Bin a -> IO ()
seekBin (BinIO _ ix_r h) (BinPtr p) = do
writeFastMutInt ix_r p
hSeek h AbsoluteSeek (fromIntegral p)
seekBin h@(BinMem _ ix_r sz_r a) (BinPtr p) = do
sz <- readFastMutInt sz_r
if (p >= sz)
then do expandBin h p; writeFastMutInt ix_r p
else writeFastMutInt ix_r p
isEOFBin :: BinHandle -> IO Bool
isEOFBin (BinMem _ ix_r sz_r a) = do
ix <- readFastMutInt ix_r
sz <- readFastMutInt sz_r
return (ix >= sz)
isEOFBin (BinIO _ ix_r h) = hIsEOF h
readBinMem :: FilePath -> IO BinHandle
-- Return a BinHandle with a totally undefined State
readBinMem filename = do
h <- openBinaryFile filename ReadMode
filesize' <- hFileSize h
let filesize = fromIntegral filesize'
arr <- newArray_ (0,filesize-1)
count <- hGetArray h arr filesize
when (count /= filesize)
(error ("Hi.Binary.readBinMem: only read " ++ show count ++ " bytes"))
hClose h
arr_r <- newIORef arr
ix_r <- newFastMutInt
writeFastMutInt ix_r 0
sz_r <- newFastMutInt
writeFastMutInt sz_r filesize
return (BinMem noUserData ix_r sz_r arr_r)
-- expand the size of the array to include a specified offset
expandBin :: BinHandle -> Int -> IO ()
expandBin (BinMem _ ix_r sz_r arr_r) off = do
sz <- readFastMutInt sz_r
let sz' = head (dropWhile (<= off) (iterate (* 2) sz))
arr <- readIORef arr_r
arr' <- newArray_ (0,sz'-1)
sequence_ [ unsafeRead arr i >>= unsafeWrite arr' i
| i <- [ 0 .. sz-1 ] ]
writeFastMutInt sz_r sz'
writeIORef arr_r arr'
#ifdef DEBUG
hPutStrLn stderr ("Binary: expanding to size: " ++ show sz')
#endif
return ()
expandBin (BinIO _ _ _) _ = return ()
-- no need to expand a file, we'll assume they expand by themselves.
-- -----------------------------------------------------------------------------
-- Low-level reading/writing of bytes
getWord8 :: BinHandle -> IO Word8
getWord8 (BinMem _ ix_r sz_r arr_r) = do
ix <- readFastMutInt ix_r
sz <- readFastMutInt sz_r
when (ix >= sz) $
#if __GLASGOW_HASKELL__ <= 408
throw (mkIOError eofErrorType "Hi.Binary.getWord8" Nothing Nothing)
#else
ioError (mkIOError eofErrorType "Hi.Binary.getWord8" Nothing Nothing)
#endif
arr <- readIORef arr_r
w <- unsafeRead arr ix
writeFastMutInt ix_r (ix+1)
return w
getWord8 (BinIO _ ix_r h) = do
ix <- readFastMutInt ix_r
c <- hGetChar h
writeFastMutInt ix_r (ix+1)
return $! (fromIntegral (ord c)) -- XXX not really correct
getByte :: BinHandle -> IO Word8
getByte = getWord8
-- -----------------------------------------------------------------------------
-- Primitve Word writes
instance Binary Word8 where
get = getWord8
instance Binary Word16 where
get h = do
w1 <- getWord8 h
w2 <- getWord8 h
return $! ((fromIntegral w1 `shiftL` 8) .|. fromIntegral w2)
instance Binary Word32 where
get h = do
w1 <- getWord8 h
w2 <- getWord8 h
w3 <- getWord8 h
w4 <- getWord8 h
return $! ((fromIntegral w1 `shiftL` 24) .|.
(fromIntegral w2 `shiftL` 16) .|.
(fromIntegral w3 `shiftL` 8) .|.
(fromIntegral w4))
instance Binary Word64 where
get h = do
w1 <- getWord8 h
w2 <- getWord8 h
w3 <- getWord8 h
w4 <- getWord8 h
w5 <- getWord8 h
w6 <- getWord8 h
w7 <- getWord8 h
w8 <- getWord8 h
return $! ((fromIntegral w1 `shiftL` 56) .|.
(fromIntegral w2 `shiftL` 48) .|.
(fromIntegral w3 `shiftL` 40) .|.
(fromIntegral w4 `shiftL` 32) .|.
(fromIntegral w5 `shiftL` 24) .|.
(fromIntegral w6 `shiftL` 16) .|.
(fromIntegral w7 `shiftL` 8) .|.
(fromIntegral w8))
-- -----------------------------------------------------------------------------
-- Primitve Int writes
instance Binary Int8 where
get h = do w <- get h; return $! (fromIntegral (w::Word8))
instance Binary Int16 where
get h = do w <- get h; return $! (fromIntegral (w::Word16))
instance Binary Int32 where
get h = do w <- get h; return $! (fromIntegral (w::Word32))
instance Binary Int64 where
get h = do w <- get h; return $! (fromIntegral (w::Word64))
-- -----------------------------------------------------------------------------
-- Instances for standard types
instance Binary () where
get _ = return ()
instance Binary Bool where
get bh = do x <- getWord8 bh; return $! (toEnum (fromIntegral x))
instance Binary Char where
get bh = do x <- get bh; return $! (chr (fromIntegral (x :: Word32)))
instance Binary Int where
#if SIZEOF_HSINT == 4
get bh = do
x <- get bh
return $! (fromIntegral (x :: Int32))
#elif SIZEOF_HSINT == 8
get bh = do
x <- get bh
return $! (fromIntegral (x :: Int64))
#else
#error "unsupported sizeof(HsInt)"
#endif
instance Binary a => Binary [a] where
#if __GLASGOW_HASKELL__ < 605
get bh = do h <- getWord8 bh
case h of
0 -> return []
_ -> do x <- get bh
xs <- get bh
return (x:xs)
#else
get bh = do
b <- getByte bh
len <- if b == 0xff
then get bh
else return (fromIntegral b :: Word32)
let loop 0 = return []
loop n = do a <- get bh; as <- loop (n-1); return (a:as)
loop len
#endif
instance (Binary a, Binary b) => Binary (a,b) where
get bh = do a <- get bh
b <- get bh
return (a,b)
instance (Binary a, Binary b, Binary c) => Binary (a,b,c) where
get bh = do a <- get bh
b <- get bh
c <- get bh
return (a,b,c)
instance (Binary a, Binary b, Binary c, Binary d) => Binary (a,b,c,d) where
get bh = do a <- get bh
b <- get bh
c <- get bh
d <- get bh
return (a,b,c,d)
instance Binary a => Binary (Maybe a) where
get bh = do h <- getWord8 bh
case h of
0 -> return Nothing
_ -> do x <- get bh; return (Just x)
instance (Binary a, Binary b) => Binary (Either a b) where
get bh = do h <- getWord8 bh
case h of
0 -> do a <- get bh ; return (Left a)
_ -> do b <- get bh ; return (Right b)
#ifdef __GLASGOW_HASKELL__
instance Binary Integer where
get bh = do
b <- getByte bh
case b of
0 -> do (I# i#) <- get bh
return (S# i#)
_ -> do (I# s#) <- get bh
sz <- get bh
(BA a#) <- getByteArray bh sz
return (J# s# a#)
getByteArray :: BinHandle -> Int -> IO ByteArray
getByteArray bh (I# sz) = do
(MBA arr) <- newByteArray sz
let loop n
| n ==# sz = return ()
| otherwise = do
w <- getByte bh
writeByteArray arr n w
loop (n +# 1#)
loop 0#
freezeByteArray arr
data ByteArray = BA ByteArray#
data MBA = MBA (MutableByteArray# RealWorld)
newByteArray :: Int# -> IO MBA
newByteArray sz = IO $ \s ->
case newByteArray# sz s of { (# s, arr #) ->
(# s, MBA arr #) }
freezeByteArray :: MutableByteArray# RealWorld -> IO ByteArray
freezeByteArray arr = IO $ \s ->
case unsafeFreezeByteArray# arr s of { (# s, arr #) ->
(# s, BA arr #) }
#if __GLASGOW_HASKELL__ < 503
writeByteArray arr i w8 = IO $ \s ->
case word8ToWord w8 of { W# w# ->
case writeCharArray# arr i (chr# (word2Int# w#)) s of { s ->
(# s , () #) }}
#else
writeByteArray arr i (W8# w) = IO $ \s ->
case writeWord8Array# arr i w s of { s ->
(# s, () #) }
#endif
#if __GLASGOW_HASKELL__ < 503
indexByteArray a# n# = fromIntegral (I# (ord# (indexCharArray# a# n#)))
#else
indexByteArray a# n# = W8# (indexWord8Array# a# n#)
#endif
instance (Integral a, Binary a) => Binary (Ratio a) where
get bh = do a <- get bh; b <- get bh; return (a :% b)
#endif
instance Binary (Bin a) where
get bh = do i <- get bh; return (BinPtr i)
-- -----------------------------------------------------------------------------
-- Lazy reading/writing
lazyGet :: Binary a => BinHandle -> IO a
lazyGet bh = do
p <- get bh -- a BinPtr
p_a <- tellBin bh
a <- unsafeInterleaveIO (getAt bh p_a)
seekBin bh p -- skip over the object for now
return a
-- --------------------------------------------------------------
-- Main wrappers: getBinFileWithDict, putBinFileWithDict
--
-- This layer is built on top of the stuff above,
-- and should not know anything about BinHandles
-- --------------------------------------------------------------
initBinMemSize = (1024*1024) :: Int
binaryInterfaceMagic = 0x1face :: Word32
getBinFileWithDict :: Binary a => FilePath -> IO a
getBinFileWithDict file_path = do
bh <- Language.Hi.Binary.readBinMem file_path
-- Read the magic number to check that this really is a GHC .hi file
-- (This magic number does not change when we change
-- GHC interface file format)
magic <- get bh
when (magic /= binaryInterfaceMagic) $
error "magic number mismatch: old/corrupt interface file?"
-- Read the dictionary
-- The next word in the file is a pointer to where the dictionary is
-- (probably at the end of the file)
dict_p <- Language.Hi.Binary.get bh -- Get the dictionary ptr
data_p <- tellBin bh -- Remember where we are now
seekBin bh dict_p
dict <- getDictionary bh
seekBin bh data_p -- Back to where we were before
-- Initialise the user-data field of bh
let bh' = setUserData bh (initReadState dict)
-- At last, get the thing
get bh'
-- -----------------------------------------------------------------------------
-- UserData
-- -----------------------------------------------------------------------------
data UserData =
UserData { -- This field is used only when reading
ud_dict :: Dictionary,
-- The next two fields are only used when writing
ud_next :: IORef Int, -- The next index to use
#if __GLASGOW_HASKELL__ < 604
ud_map :: IORef (FiniteMap Unique (Int,FastString))
#else
ud_map :: IORef (M.Map Unique (Int,FastString))
#endif
}
noUserData = error "Hi.Binary.UserData: no user data"
initReadState :: Dictionary -> UserData
initReadState dict = UserData{ ud_dict = dict,
ud_next = undef "next",
ud_map = undef "map" }
newWriteState :: IO UserData
newWriteState = do
j_r <- newIORef 0
#if __GLASGOW_HASKELL__ < 604
out_r <- newIORef emptyFM
#else
out_r <- newIORef M.empty
#endif
return (UserData { ud_dict = error "dict",
ud_next = j_r,
ud_map = out_r })
undef s = error ("Hi.Binary.UserData: no " ++ s)
---------------------------------------------------------
-- The Dictionary
---------------------------------------------------------
type Dictionary = Array Int FastString -- The dictionary
-- Should be 0-indexed
getDictionary :: BinHandle -> IO Dictionary
getDictionary bh = do
sz <- get bh
elems <- sequence (take sz (repeat (getFS bh)))
return (listArray (0,sz-1) elems)
#if __GLASGOW_HASKELL__ < 604
constructDictionary :: Int -> FiniteMap Unique (Int,FastString) -> Dictionary
constructDictionary j fm = array (0,j-1) (eltsFM fm)
#else
constructDictionary :: Int -> M.Map Unique (Int,FastString) -> Dictionary
constructDictionary j fm = array (0,j-1) (M.elems fm)
#endif
---------------------------------------------------------
-- Reading and writing FastStrings
---------------------------------------------------------
getFS bh = do
(I# l) <- get bh
(BA ba) <- getByteArray bh (I# l)
return $! (mkFastSubStringBA# ba 0# l)
instance Binary FastString where
get bh = do j <- get bh -- Int
return $! (ud_dict (getUserData bh) ! j)